

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[3,3'-diethyl-1,1'-(propane-1.3-divl)di(1H-imidazol-3-ium) [silver(I)di-*µ*-iodido-silver(I)-di-*µ*-iodido]]

Jian-Zhong Huo, Zhi-Xiang Zhao, Men-Chao Shi, Hui-Long Li* and Qing-Xiang Liu

Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China

Correspondence e-mail: qxliu@eyou.com

Received 28 March 2012; accepted 8 May 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.010 Å; R factor = 0.029; wR factor = 0.075; data-to-parameter ratio = 19.0.

The title compound, $\{(C_{13}H_{22}N_4)[Ag_2I_4]\}_n$, was prepared by reaction of 1,3-bis(N-ethylimidazolium-1-yl)propane iodide with silver (I) oxide. In the 3,3'-diethyl-1,1'-(propane-1,3divl)di(1*H*-imidazol-3-ium) cation, the dihedral angle between the imidazole rings is 49.3 (1)°. In the $[Ag_2I_4]^{2-}$ anion, each Ag^I atom is bonded to three iodide anions, the two Ag^I atoms and two of the iodides forming Ag₂I₂ square-planar (r.m.s. deviation = 0.01 Å) units. The remaining two iodides, which are placed on opposite sides of the square, together with their centrosymmetric counterparts, link the square-planar Ag₂I₂ units into $\{[Ag_2I_4]^{2-}\}_n$ polymeric chains via Ag-I bonds.

Related literature

For background to the chemistry of imidazolium compounds, see: Wasserscheid & Keim (2000); Migowski & Dupont (2007). For some applications of imidazolium salts, see: Leclercq & Schmitzer (2009); Petkovic et al. (2011); Chen et al. (2006). For other polymeric chain structures formed via Ag-I bonds, see: Chen & Liu (2003).

Experimental

Crystal data

$(C_{13}H_{22}N_4)[Ag_2I_4]$	$\gamma = 79.903 \ (3)^{\circ}$
$M_r = 957.69$	V = 1158.7 (4) Å ³
Triclinic, P1	Z = 2
a = 9.1202 (18) Å	Mo $K\alpha$ radiation
b = 11.543 (2) Å	$\mu = 7.02 \text{ mm}^{-1}$
c = 12.158 (2) Å	T = 296 K
$\alpha = 74.677 \ (3)^{\circ}$	$0.25 \times 0.24 \times 0.22 \text{ mm}$
$\beta = 70.566 \ (3)^{\circ}$	

Data collection

Bruker APEXII CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.932, \ T_{\max} = 0.987$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$	
$wR(F^2) = 0.075$	
S = 1.04	
4008 reflections	

5868 measured reflections 4008 independent reflections 3692 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.025$

211 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 1.05 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.86 \text{ e } \text{\AA}^{-3}$

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008): program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This project was supported by the National Science Foundation of China (project grant No. 21172172) and the Natural Science Foundation of Tianjin (11JCZDJC22000).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LR2057).

References

- Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, W. Z. & Liu, F. H. (2003). J. Organomet. Chem. 673, 5-12.
- Chen, J. H., Zhang, X. Q., Feng, Q. & Luo, M. M. (2006). J. Organomet. Chem. **691**, 470–474.
- Leclercq, L. & Schmitzer, A. R. (2009). Supramol. Chem. 21, 245-263.
- Migowski, P. & Dupont, J. (2007). Chem. Eur. J. 13, 32-39.
- Petkovic, M., Seddon, K. R., Rebelo, L. P. N. & Pereira, C. S. (2011). Chem. Soc. Rev. 40, 1383-1403.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wasserscheid, P. & Keim, W. (2000). Angew. Chem. 112, 3926-3945.

supplementary materials

Acta Cryst. (2012). E68, m787 [doi:10.1107/S1600536812020715]

catena-Poly[3,3'-diethyl-1,1'-(propane-1,3-diyl)di(1*H*-imidazol-3-ium) [silver(I)-di-μ-iodido-silver(I)-di-μ-iodido]]

Jian-Zhong Huo, Zhi-Xiang Zhao, Men-Chao Shi, Hui-Long Li and Qing-Xiang Liu

Comment

The design and synthesis of functionalized imidazolium salts are driven by the need for understanding fundamental physical and chemical properties of low melting point salts and modifying them as specific materials (Wasserscheid & Keim, 2000; Migowski & Dupont, 2007). In recent years, the imidazolium salts have been widely studied in ionic liquids (Leclercq & Schmitzer, 2009; Petkovic *et al.*, 2011) and catalytic chemistry (Chen *et al.*, 2006). Herein, we report the preparation and crystal structure of a anionic complex with bis-imidazolium salt, [1,3-bis(*N*-ethylimidazolium-1-yl)propane][Ag₂I₄].

The title compound [1,3-dis(*N*-ethylimidazolium-1-yl)propane][Ag₂I₄] was prepared *via* the reaction of 1,3-dis(*N*-ethylimidazolium-1-yl)propane iodide with silver oxide (Fig. 1). In the cationic unit of title compound, the dihedral angle between two imidazole rings is 49.3 (1)° (Fig. 2). In the anionic unit [Ag₂I₄]²⁻, two silver atoms and two iodine atoms formed a nearly coplanar [Ag₂I₂] moiety (the dihedral angle between I1—Ag1—I2 plane and I1—Ag2—I2 plane is 1.2 (5)°), and other two iodine atoms lie in two sides of the [Ag₂I₂] plane. Anionic complex [Ag₂I₄]²⁻ has been reported, and its formation is strongly influenced by the counteraction. Also, the anionic unit [Ag₂I₄]²⁻, each silver atom is surrounded by four iodine atoms to afford a distorted tetrahedral geometry. The I1—Ag1—I2, Ag1—I1—Ag2 and I3—Ag1—I2 bond angles are 101.4 (1)°, 76.8 (2)° and 116.8 (7)°, respectively. The Ag1—I1, Ag1—I2 and Ag1—I3 bond distances are 2.912 (0) Å, 2.908 (9) Å and 2.861 (8) Å, respectively.

Experimental

A solution of 1-ethylimidazole (1.432 g, 14.9 mmol) and 1,3-diiodopropane (2.000 g, 6.8 mmol) in THF (100 ml) was stirred for three days under refluxing, and a precipitate was formed. The product was filtered and washed with THF, and the white powders of 1, 3-dis(*N*-ethylimidazolium-1-yl)propane iodide was obtained by recrystallization from methanol/diethyl ether. Yield: 2.838 g (86%). Mp: 100–102°C. A suspension of 1, 3-dis(*N*-ethylimidazolium-1-yl)propane iodide (0.200 g, 0.4 mmol) and silver(I) oxide (0.093 g, 0.4 mmol) in dichloromethane (30 ml) was refluxed for 12 h to give a brown solution. The resulting solution was filtered and concentrated to 8 ml, and then diethyl ether (5 ml) was added to precipitate a white powder [1,3-dis(*N*-ethylimidazolium-1-yl)propane][Ag₂I₄]. Yield: 0.216 g (55%). Mp: 178–180°C. Anal. Calcd for $C_{13}H_{22}Ag_{2}I_{4}N_{4}$: C 16.30, H 2.32, N 5.85%; found: C 16.45, H 2.63, N 5.91%. ¹H NMR (400 MHz, DMSO-d6): 1.59 (t, J = 7.2 Hz, 6H, CH₃), 1.76 (m, 2H, CH₂), 4.62 (q, J = 7.2 Hz, 4H, CH₂), 5.82 (t, J = 6.6 Hz, 4H, CH₂), 7.80 (s, 2H, imiH), 7.87 (s, 2H, imiH), 9.46 (s, 2H, 2-imiH) (imi = imidazole).

Refinement

All H atoms were initially located in a difference Fourier map. They were then placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.96 Å(methyl), 0.97 Å (methylene), 0.93 Å (heterocyclic-ring) and $U_{i_{so}}(H)$ set to either 1.2 $U_{eq}(C)$ or 1.5 $U_{eq}(C)$.

Computing details

Data collection: *APEX2* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT* (Bruker, 2003); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

Perspective view of the title compound with anisotropic displacement parameters depicting 30% probability. All hydrogen atoms were omitted for clarity.

catena-Poly[3,3'-diethyl-1,1'-(propane-1,3-diyl)di(1*H*- imidazol-3-ium) [silver(l)-di-µ-iodido-silver(l)-di-µ-iodido]]

Crystal data	
$(C_{13}H_{22}N_4)[Ag_2I_4]$	$\beta = 70.566 \ (3)^{\circ}$
$M_r = 957.69$	$\gamma = 79.903 \ (3)^{\circ}$
Triclinic, $P\overline{1}$	$V = 1158.7 (4) \text{ Å}^3$
Hall symbol: -P 1	Z = 2
a = 9.1202 (18) Å	F(000) = 868
b = 11.543 (2) Å	$D_{\rm x} = 2.745 {\rm Mg} {\rm m}^{-3}$
c = 12.158 (2) Å	Mo K α radiation, $\lambda = 0.71073$ Å
$\alpha = 74.677(3)^{\circ}$	Cell parameters from 5325 reflections

 $\theta = 2.3-27.9^{\circ}$ $\mu = 7.02 \text{ mm}^{-1}$ T = 296 K

Data collection

Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.932, T_{\max} = 0.987$

Refinement

5	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.029$	H-atom parameters constrained
$wR(F^2) = 0.075$	$w = 1/[\sigma^2(F_o^2) + (0.0283P)^2 + 2.6676P]$
S = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
4008 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
211 parameters	$\Delta \rho_{\rm max} = 1.05 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.86 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.00298 (17)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Block, light yellow

 $R_{\rm int} = 0.025$

 $h = -9 \rightarrow 10$

 $k = -13 \rightarrow 13$

 $l = -14 \rightarrow 13$

 $0.25 \times 0.24 \times 0.22 \text{ mm}$

5868 measured reflections

 $\theta_{\rm max} = 25.0^{\circ}, \, \theta_{\rm min} = 1.8^{\circ}$

4008 independent reflections

3692 reflections with $I > 2\sigma(I)$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates	and isotropic of	or equivalent	<i>isotropic</i>	displacement	parameters	$(Å^2)$)
	1	1	1	1	1	· · ·	

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Agl	0.49679 (5)	0.38435 (5)	0.12441 (5)	0.06103 (15)	
Ag2	0.51160 (6)	0.13741 (5)	0.37420 (5)	0.06227 (15)	
I1	0.60326 (4)	0.13113 (3)	0.12542 (3)	0.04516 (12)	
I2	0.40256 (4)	0.38216 (3)	0.37820 (3)	0.05260 (12)	
I3	0.75335 (4)	0.51943 (3)	-0.02697 (3)	0.04661 (12)	
I4	0.71765 (4)	0.03787 (3)	0.51764 (3)	0.05221 (13)	
N1	0.0416 (6)	0.6747 (4)	0.6691 (4)	0.0537 (11)	
N2	-0.0555 (5)	0.7953 (4)	0.7900 (4)	0.0409 (9)	
N3	0.0591 (6)	1.1532 (4)	0.7756 (4)	0.0520 (11)	
N4	0.2501 (5)	1.2543 (4)	0.7546 (4)	0.0494 (11)	
C1	0.0810 (13)	0.6785 (8)	0.4606 (7)	0.112 (3)	
H1A	-0.0160	0.7252	0.4568	0.169*	

H1B	0.1122	0.6284	0.4034	0.169*
H1C	0.1598	0.7318	0.4426	0.169*
C2	0.0617 (12)	0.6051 (7)	0.5769 (7)	0.091 (3)
H2A	0.1523	0.5465	0.5756	0.109*
H2B	-0.0290	0.5611	0.5993	0.109*
C3	-0.0752 (7)	0.7562 (5)	0.7026 (5)	0.0535 (14)
H3	-0.1577	0.7820	0.6704	0.064*
C4	0.0778 (6)	0.7339 (5)	0.8119 (6)	0.0527 (14)
H4	0.1185	0.7415	0.8701	0.063*
C5	0.1395 (7)	0.6616 (5)	0.7360 (6)	0.0570 (15)
Н5	0.2323	0.6115	0.7297	0.068*
C6	-0.1652 (7)	0.8773 (6)	0.8592 (6)	0.0639 (17)
H6A	-0.2207	0.8311	0.9368	0.077*
H6B	-0.2414	0.9173	0.8182	0.077*
C7	-0.0831 (8)	0.9726 (6)	0.8771 (6)	0.0601 (15)
H7A	-0.1545	1.0129	0.9378	0.072*
H7B	0.0059	0.9340	0.9042	0.072*
C8	-0.0296 (8)	1.0630 (6)	0.7621 (6)	0.0629 (16)
H8A	-0.1194	1.1045	0.7374	0.076*
H8B	0.0367	1.0218	0.7004	0.076*
C9	-0.0017 (7)	1.2409 (5)	0.8407 (5)	0.0556 (14)
Н9	-0.1052	1.2541	0.8859	0.067*
C10	0.1163 (7)	1.3039 (5)	0.8267 (5)	0.0576 (15)
H10	0.1090	1.3694	0.8598	0.069*
C11	0.2117 (7)	1.1627 (5)	0.7253 (5)	0.0525 (13)
H11	0.2805	1.1133	0.6774	0.063*
C12	0.4114 (8)	1.2921 (7)	0.7163 (6)	0.0737 (19)
H12A	0.4710	1.2680	0.6421	0.088*
H12B	0.4052	1.3794	0.7009	0.088*
C13	0.4953 (7)	1.2391 (7)	0.8069 (7)	0.0719 (19)
H13A	0.4354	1.2606	0.8814	0.108*
H13B	0.5956	1.2697	0.7797	0.108*
H13C	0.5089	1.1529	0.8181	0.108*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Ag1	0.0493 (3)	0.0654 (3)	0.0668 (3)	-0.0107 (2)	-0.0207 (2)	-0.0044 (2)
Ag2	0.0636 (3)	0.0600 (3)	0.0629 (3)	-0.0068 (2)	-0.0189 (2)	-0.0128 (2)
I1	0.0412 (2)	0.0478 (2)	0.0471 (2)	-0.00823 (15)	-0.01187 (15)	-0.01073 (15)
I2	0.0532 (2)	0.0519 (2)	0.0513 (2)	-0.00460 (17)	-0.01208 (17)	-0.01417 (17)
I3	0.03871 (19)	0.0443 (2)	0.0542 (2)	-0.00964 (14)	-0.01653 (15)	0.00034 (16)
I4	0.0522 (2)	0.0540 (2)	0.0524 (2)	-0.01805 (17)	-0.01913 (17)	-0.00228 (17)
N1	0.059 (3)	0.051 (3)	0.051 (3)	-0.009 (2)	-0.016 (2)	-0.010 (2)
N2	0.033 (2)	0.043 (2)	0.048 (2)	-0.0121 (18)	-0.0158 (18)	-0.0016 (19)
N3	0.058 (3)	0.045 (2)	0.054 (3)	-0.011 (2)	-0.010 (2)	-0.017 (2)
N4	0.057 (3)	0.047 (2)	0.045 (3)	-0.014 (2)	-0.017 (2)	-0.004 (2)
C1	0.199 (11)	0.081 (6)	0.066 (5)	-0.043 (6)	-0.034 (6)	-0.019 (4)
C2	0.138 (8)	0.065 (4)	0.083 (5)	-0.014 (5)	-0.037 (5)	-0.027 (4)
C3	0.057 (3)	0.056 (3)	0.059 (3)	-0.012 (3)	-0.035 (3)	-0.004 (3)

supplementary materials

C4	0.044 (3)	0.054 (3)	0.067 (4)	-0.011 (3)	-0.031 (3)	-0.002 (3)	
C5	0.039 (3)	0.053 (3)	0.080 (4)	-0.008(3)	-0.021 (3)	-0.010 (3)	
C6	0.042 (3)	0.074 (4)	0.070 (4)	-0.021 (3)	0.003 (3)	-0.021 (3)	
C7	0.063 (4)	0.064 (4)	0.054 (3)	-0.009 (3)	-0.011 (3)	-0.021 (3)	
C8	0.075 (4)	0.060 (4)	0.063 (4)	-0.016 (3)	-0.027 (3)	-0.014 (3)	
C9	0.051 (3)	0.057 (3)	0.059 (3)	-0.005 (3)	-0.009 (3)	-0.024 (3)	
C10	0.071 (4)	0.052 (3)	0.055 (3)	-0.009 (3)	-0.018 (3)	-0.019 (3)	
C11	0.058 (3)	0.044 (3)	0.053 (3)	-0.001 (3)	-0.014 (3)	-0.013 (3)	
C12	0.073 (5)	0.084 (5)	0.064 (4)	-0.034 (4)	-0.019 (3)	-0.002 (4)	
C13	0.050 (4)	0.093 (5)	0.074 (4)	-0.005 (3)	-0.023 (3)	-0.018 (4)	

Geometric parameters (Å, °)

Ag1—I3 ⁱ	2.8383 (7)	C1—H1C	0.9600	
Ag1—I3	2.8618 (7)	C2—H2A	0.9700	
Ag1—I2	2.9089 (9)	C2—H2B	0.9700	
Ag1—I1	2.9120 (8)	С3—Н3	0.9300	
Ag2—I2	2.8333 (8)	C4—C5	1.327 (9)	
Ag2—I4	2.8735 (7)	C4—H4	0.9300	
Ag2—I1	2.8749 (8)	С5—Н5	0.9300	
Ag2—I4 ⁱⁱ	2.9054 (8)	C6—C7	1.529 (8)	
I3—Ag1 ⁱ	2.8383 (7)	C6—H6A	0.9700	
I4—Ag2 ⁱⁱ	2.9054 (7)	C6—H6B	0.9700	
N1—C3	1.322 (8)	C7—C8	1.495 (9)	
N1—C5	1.362 (7)	C7—H7A	0.9700	
N1—C2	1.491 (8)	C7—H7B	0.9700	
N2—C3	1.332 (7)	C8—H8A	0.9700	
N2—C4	1.366 (7)	C8—H8B	0.9700	
N2—C6	1.460 (7)	C9—C10	1.342 (8)	
N3—C11	1.332 (7)	С9—Н9	0.9300	
N3—C9	1.376 (7)	C10—H10	0.9300	
N3—C8	1.496 (7)	C11—H11	0.9300	
N4—C11	1.333 (7)	C12—C13	1.488 (10)	
N4—C10	1.376 (7)	C12—H12A	0.9700	
N4—C12	1.495 (8)	C12—H12B	0.9700	
C1—C2	1.415 (11)	C13—H13A	0.9600	
C1—H1A	0.9600	C13—H13B	0.9600	
C1—H1B	0.9600	C13—H13C	0.9600	
I3 ⁱ —Ag1—I3	105.33 (2)	С5—С4—Н4	125.8	
$I3^{i}$ —Ag1—I2	111.08 (2)	N2—C4—H4	125.8	
I3—Ag1—I2	116.87 (2)	C4—C5—N1	107.1 (5)	
I3 ⁱ —Ag1—I1	115.75 (2)	С4—С5—Н5	126.4	
I3—Ag1—I1	106.74 (2)	N1—C5—H5	126.4	
I2—Ag1—I1	101.418 (18)	N2—C6—C7	112.2 (5)	
I2—Ag2—I4	112.83 (2)	N2—C6—H6A	109.2	
I2—Ag2—I1	104.221 (19)	С7—С6—Н6А	109.2	
I4—Ag2—I1	121.64 (2)	N2—C6—H6B	109.2	
I2—Ag2—I4 ⁱⁱ	117.25 (2)	C7—C6—H6B	109.2	
I4—Ag2—I4 ⁱⁱ	98.81 (2)	H6A—C6—H6B	107.9	

I1—Ag2—I4 ⁱⁱ	102.35 (2)	C8—C7—C6	110.0 (5)
Ag2—I1—Ag1	76.825 (17)	С8—С7—Н7А	109.7
Ag2—I2—Ag1	77.525 (17)	С6—С7—Н7А	109.7
Ag1 ⁱ —I3—Ag1	74.67 (2)	С8—С7—Н7В	109.7
Ag2—I4—Ag2 ⁱⁱ	81.19 (2)	С6—С7—Н7В	109.7
C3—N1—C5	108.4 (5)	H7A—C7—H7B	108.2
C3—N1—C2	126.4 (6)	C7—C8—N3	111.0 (5)
C5—N1—C2	125.2 (6)	С7—С8—Н8А	109.4
C3—N2—C4	107.0 (5)	N3—C8—H8A	109.4
C3—N2—C6	126.4 (5)	С7—С8—Н8В	109.4
C4—N2—C6	126.1 (5)	N3—C8—H8B	109.4
C11—N3—C9	108.1 (5)	H8A—C8—H8B	108.0
C11—N3—C8	125.4 (5)	C10—C9—N3	107.2 (5)
C9—N3—C8	126.4 (5)	С10—С9—Н9	126.4
C11—N4—C10	107.7 (5)	N3—C9—H9	126.4
C11—N4—C12	124.9 (5)	C9—C10—N4	107.9 (5)
C10—N4—C12	127.4 (5)	С9—С10—Н10	126.1
C2—C1—H1A	109.5	N4—C10—H10	126.1
C2—C1—H1B	109.5	N3—C11—N4	109.1 (5)
H1A—C1—H1B	109.5	N3—C11—H11	125.4
C2—C1—H1C	109.5	N4—C11—H11	125.4
H1A—C1—H1C	109.5	C13—C12—N4	113.0 (6)
H1B—C1—H1C	109.5	C13—C12—H12A	109.0
C1-C2-N1	113.4 (6)	N4—C12—H12A	109.0
C1—C2—H2A	108.9	C13—C12—H12B	109.0
N1—C2—H2A	108.9	N4—C12—H12B	109.0
C1—C2—H2B	108.9	H12A—C12—H12B	107.8
N1—C2—H2B	108.9	C12—C13—H13A	109.5
H2A—C2—H2B	107.7	C12—C13—H13B	109.5
N1—C3—N2	109.0 (5)	H13A—C13—H13B	109.5
N1—C3—H3	125.5	C12—C13—H13C	109.5
N2—C3—H3	125.5	H13A—C13—H13C	109.5
C5—C4—N2	108.4 (5)	H13B—C13—H13C	109.5
I2—Ag2—I1—Ag1	0.813 (16)	C6—N2—C3—N1	-174.1 (5)
14—Ag2—I1—Ag1	-127.96 (2)	C3—N2—C4—C5	1.8 (6)
14 ⁿ —Ag2—11—Ag1	123.43 (2)	C6—N2—C4—C5	175.1 (5)
13 ¹ —Ag1—11—Ag2	-121.10(2)	N2—C4—C5—N1	-2.1 (7)
13—Ag1—11—Ag2	122.05 (2)	C3—N1—C5—C4	1.6 (7)
12—Ag1—I1—Ag2	-0.783 (16)	C2—N1—C5—C4	-176.6 (6)
14—Ag2—I2—Ag1	133.12 (2)	C3—N2—C6—C7	-137.1 (6)
11—Ag2—I2—Ag1	-0.811 (16)	C4—N2—C6—C7	50.9 (8)
14"—Ag2—12—Ag1	-113.07(2)	$N_2 - C_6 - C_7 - C_8$	/2.4 (7)
13'—Ag1—I2—Ag2	124.36 (2)	$C_{0}-C_{0}-C_{8}-N_{3}$	-176.8 (5)
13—Ag1—12—Ag2	-114.78 (3)	C11 - N3 - C8 - C7	111.0 (7)
II—Agl—I2—Ag2	0.792 (16)	C9—N3—C8—C7	-69.5 (8)
$13 - Ag1 - 13 - Ag1^{1}$	0.0	C11 - N3 - C9 - C10	1.0 (7)
$12 - Agl - 13 - Agl^{1}$	-123.85 (3)	C8—N3—C9—C10	-17/8.5(6)
11—Ag1—I3—Ag1 ¹	123.56 (3)	N3—C9—C10—N4	-0.8 (7)

I2—A σ 2—I4—A σ 2 ⁱⁱ	124 61 (3)	C11—N4—C10—C9	03(7)
$I1 - Ag2 - I4 - Ag2^{ii}$	-110.47 (3)	C12—N4—C10—C9	-178.5 (6)
I4 ⁱⁱ —Ag2—I4—Ag2 ⁱⁱ	0.0	C9—N3—C11—N4	-0.8 (7)
C3—N1—C2—C1	63.8 (11)	C8—N3—C11—N4	178.7 (5)
C5—N1—C2—C1	-118.4 (9)	C10-N4-C11-N3	0.3 (6)
C5—N1—C3—N2	-0.4 (6)	C12—N4—C11—N3	179.2 (5)
C2—N1—C3—N2	177.7 (6)	C11—N4—C12—C13	-95.5 (8)
C4—N2—C3—N1	-0.8 (6)	C10-N4-C12-C13	83.2 (8)

Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y, -z+1.